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Hyper flexible neural networks rapidly
switch between logic operations in a
compact four neuron circuit

Check for updates

Alexander James White1,2,7 , Belle Liu1,3,7, Ming-Ju Hsieh1,3, Meng-Fan Chang4,5, Kuo-An Wu3 &
Chung-Chuan Lo1,6

Biological neural circuits at various levels exhibit rapid adaptability to diverse environmental stimuli.
Such fast response times imply that adaptation cannot rely solely on synaptic plasticity, which
operates on amuch slower timescale. Instead, circuitsmust be inherently hyper-flexible and receptive
to switches in functionalities without changes in network structure. This biological flexibility is a fruitful
mechanism for constructing artificial reconfigurable circuits, whether they are spiking or non-spiking.
In this study, we demonstrate that a four-neuron circuit can rapidly and controllably switch between 24
unique logical functions while maintaining the same set of synaptic weights. Moreover, we show that
this reconfigurability works for several different underlying neuronal architectures and strikingly can be
applied to a network composed of any sigmoid-shaped activation function. We conclude with proof-
of-concept applications showing that we can perform standard tasks, such as a full-adder, as well as
event-based conditional computing, such as detecting unexpected motion.

Across all organisms, nervous systems have been capable of dealingwith the
vast variability in their environment. Given the potentially rapid and
unpredictable nature of natural stimuli, there is often no time to reconfigure
a nervous system’s synaptic connections. To address this issue, environ-
mental stimuli or contextual stimuli push the system into a different
dynamicalmode, that allows it to perform a different set of computations1–3.
Likewise, there has been a recent push for reconfigurable computing,
especially in the neuromorphic space, in which a circuit can be repro-
grammed without changing its connectivity4. Biological network’s inherent
rapid flexibility can be leveraged for designing reconfigurable circuits, be it
neuromorphic5,6, organic7,8, or electronic4. Using direct inspiration from
biological flexibility, we can create reconfigurable neuromorphic circuits9.

Many studies have demonstrated this flexibility, for instance, studies
have shown how small neural networks in crabs and aplysia are able to
switch their function in response to different environment stimuli10–21.
Furthermore, cortical studies have shownhowcontextual cues can cause the
networks to change activity patterns2,11,16,22–26. Collectively, thesephenomena
of performing different behaviors based on contextual or environmental
information is known as flexibility1,13.

Interestingly, this flexibility is important beyond just choosing the
right behavior. There is evidence that flexible responses occur on a

microscale25,27. That is, contextual information from elsewhere in the
brain will cause different responses in small collections of neurons3,23–29.
This flexibility extends beyond just choosing the right behavior, and can
also be used in information gating3,16,30–32, motor planning10,14,25,33, and
influencing decision networks13,16,25,30–32. Moreover, there is evidence
that flexibility can exist on a microscale - meaning that contextual
information can elicit different responses in small collections of neu-
rons, not just in large-scaled networks1,3,23,25,27,29,30.

This mechanism is noticeably absent in artificial neural networks,
especially deep and convolutional neural networks (DNN and CNN). Such
networks perform a single, designated task exceptionally well, but cannot
generalize, as the solution hinges on a set of learned synaptic weights34–38. If
the task changes, so must the weights36,37,39–41. While animals do indeed use
this strategy to learn tasks, the lack of flexibility in DNNs indicates that
synaptic weights alone do not explain the whole story. Many organisms are
able to respond to a diverse array of situations without having to relearn a
new set of synaptic weights14,23,27,42. This is most clear in the motor cortex,
where synaptic weights don’t change from task to task10,14,33,38.

Previous work on reconfigurable networks tries to endow net-
works with increased flexibility. Many circuits make use of
memristors4,6,43,44 and homojunctions45 to construct reconfigurable
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networks. These reconfigurable circuits can even be used in neuro-
morphic networks to implement short-time dependent plasticity and
synaptic learning4,45,46. Moreover, this work has also shown that neu-
rons are complex dynamic systems that are capable of solving a ple-
thora of tasks, especially as a networkwith synaptic learning4–6,44,45. Still,
none of these networks seem to make use of biology’s control of the
underlying dynamics of the network without (or in addition to)
changing the synaptic weights1,14,47,48.

It is suspected that flexibility in the nervous system stems from its
highly recurrent nature. Furthermore, these networks contain bifurcations,
a qualitative change in the behavior of the system as a parameter, such as
contextual input, is varied, leading to the emergenceof newdynamic states49.
Moreover, it is proposed that this is a consequenceof the network beingnear
multiple bifurcations, i.e., at a position in which state changes are easy to
induce9,33,50–53. Being near the cusp of state changes allows the network to
rapidly switch to qualitatively different dynamics upon manipulation of
certain control parameters5,33,49. However, while several studies have
attempted to understand how bifurcations aid flexibility9,13,54, it is still
unclear how the nervous system can control networks near such compli-
cated bifurcation structures without altering synaptic weights.

In our previous work, we identified a hyper-flexible four-neuron cir-
cuit, namedCRIREL (coupled recurrent inhibitory and recurrent excitatory
loops). It is composed of two sets of strongly recurrently coupled neurons: a
recurrently connected excitatory pair and a recurrently connected inhibi-
tory pair, where these pairs are then weakly coupled with one another. We
showed that CRIRELs are flexible because we can control an underlying
double-cusp bifurcation present in the network9,48,53, which allows for new
stable or unstable states to emerge as control parameters (in this case,
synaptic weights) are varied. However, synaptic weights are not the only
controllable parameters, and here we demonstrate how varying bias cur-
rents (baseline activity level, implemented as a constant background input
current) and input, while keeping synaptic weights fixed, also induces
bifurcations and results in flexibility. Therefore, through a detailed study of
the dynamics of this microcircuit, we propose a template for how rapid
flexibility can be present in neural networks without evoking slow timescale
adaptation mechanisms.

In order to systematically investigate the repertoire of functionalities
within CRIREL, we classify its output in terms of logic gate operations
(AND,OR, etc.). These operations could be performed in terms of different
types of input characteristics, and here we choose three that are often
relevant in neuroscience—the difference inmagnitude, timing, and phase of
two input signals. In particular, timing and phase add a new type of com-
puting, as they are event-driven, require recurrent connections, and go
beyond well-trodden digital logic. To give an explicit example, during one
computation, the CRIREL circuit would be comparing one aspect of two
input signals, and produce a response. For example, performing an AND
operation in termsof inputmagnitudemeans that the circuitwill only report
“on” whenever two input values have the same magnitude, and will report
“off” otherwise. We found it natural to classify possible unique types of
outputs given these two inputs in termsof logical truth tables (i.e., AND,OR,
XOR, etc.). It is important to stress that this goes beyond just reproducing
digital logic;wewill demonstrate that temporal andphaseprocessinghas the
capability of detecting events. Moreover, computing can be done down-
stream of these events. Furthermore, classifying things in terms of a logical
operation has the added advantage of cleanly classifying all the different
ways the network operates upon its input.We show that for all three types of
input classes, we are able to generate all 8 possible nontrivial logic truth
tables. Finally, we show all 24 unique functions coexist for a given synaptic
weight and that changes in functionality arise solely from the change in the
bias current.

Results
The CRIREL circuits
To examine flexibility in small neural networks, we start with a CRIREL
microcircuit [Fig. 1a]9. This microcircuit is simultaneously near two cusp

bifurcations [Fig. 1b]9, and as such, is capable of a simple two “bit” version of
working memory [Fig. 1b, c]. Here, the"bits" are loosely whether one of the
inhibitory neurons is ON orOFF. Note that two identical inputs pushed the
memory circuit into a (1, 1) state, while asymmetric inputs pushed the
memory circuit into a (1, 0) or (0, 1) state.

In order to compute neuromorphic inputs, we add two input neurons,
which convert square impulses or sinusoidal waves into spike trains [Fig.
1e]. These neurons are solely for the purpose of making sure that the input
into the circuit is biologically realistic. We also provide an output neuron,
this is to concretely categorize the variable firing rate in the excitatory
subsystem as a binary output. The output is considered one if it fires, and
zero if it does not.

We compose the CRIREL circuit out of two different neuron imple-
mentation, the leaky integrate-and-fire neuron (LIF) and the Izhikevich
neuron (IZH) with parameters chosen such that it is an integrator (See
methods for parameters [Supplementary Tables 3, 5]42). Given that the LIF
neuron is an integrator49, we set the IZHneuron as an integrator rather than
a resonator to provide a more apples-to-apples comparison. Moreover, this
emphasizes that the flexibility arises from the network itself, not the neu-
rons’ computational complexity.

Taking this two-bit classification as a starting point, we can classify
functions in terms of binary logical operations. We take this input
classification scheme, but associate the network with either an ON state
or an OFF state as measured by the collective activity of the excitatory
subsystem. This gives rise to eight unique nontrivial input combina-
tions, AND, OR, XOR, NAND, NXOR, NAND, IMP, and NIMP [Fig.
1d and Supplementary Table 1], where the two inputs into the circuits
can be classified as 1 or 0. The binary pair (1, 1) references if the inputs
are “roughly” the same. Likewise, we can consider whether an out
neuron is on or off as a binary output of 1 or 0. Moreover, we consider
three unique types of inputs, the differences in magnitude between two
square pulse inputs [Fig. 1Di], the differences in timing between two
square pulse inputs[Fig. 1Dii], and the differences in the phase of two
sinusoidal inputs [Fig. 1Diii].

Magnitude logic
The most straightforward type of input to consider is the differences in
magnitude between two square pulse inputs [Fig. 2a]. After being fed into
the input layer, the magnitude of the square pulses is converted into a
difference in firing rate, and roughly corresponds to differentmagnitudes of
post-synaptic excitatory input. We consider the input to be (1, 1) if the
magnitudes A are roughly equal. Likewise, if the inputs are different by a
fixed amount,ΔA they are considered (1, 0) or (0, 1). An absence of input is
considered (0, 0). It is important to note that the magnitude A and the
difference in magnitude ΔA are both free parameters [Supplementary
Fig. 1].

As a concrete demonstration, we begin with an AND gate. For the
particular example, we choose the magnitude for 1 to be A = 1 nA for
the LIF neuron. We set ΔA = 0.3 nA. When the network is presented
with the input protocol, we see that the output neuron fires only when
the signal is in the (1, 1) state [Fig. 2b]. Simply by changing the bias
currents Ibias (see methods), we can change the gate into an XOR gate
[Fig. 2c], where during the (1, 1) signal, the output is silent, but fires
whenever the signal is in the (1, 0) or (0, 1) signal. Next, we show how
we can change the bias currents, from AND to XOR in the middle of
the input protocol [Fig. 2d] and the gate switches with a latency of
40 ms or about two spikes [Fig. 2e]. A majority of the transitions are
possible, but a few require global reset (strong negative input)[Sup-
plementary Fig. 2].

Next, we show that all eight unique logic gates exist for at least some set
of bias currents. We test this for LIF neurons [Fig. 3a] and for Izhikevich
(IZH) neurons in integrator mode [Fig. 3b]. The bias currents used to
produce these eight gates can be found in the supplement [Supplementary
Tables 7, 8]. We provide the parameter sweep for six of the logic gates as a
two-dimensional sweep of excitatory subsystem bias and inhibitory
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subsystembias [Fig. 3c, d]. Because IMPandNIMP require asymmetric bias
currents, they don’t fit neatly into a two-dimensional sweep, and are
not shown.

It is important to note that while each gate has a region of parameter
space, there are areas where the order of inputs matters. This is because
hysteresis andbistability cause thepreceding input to affect the computation
in the next input. As such, wemark these as unclear (gray) in the parameter
space [Fig. 3c, d].

Most of the logic gates are robust against variation in the bias currents.
This robustness can be quantified as the square root of the area of each gate’s
parameter region in the two-dimensional sweep [Fig. 3c] of excitatory
subsystem bias, and inhibitory subsystem bias [Fig. 3e]. This roughly
quantifies the change in bias that each gate can tolerate. Some gates, like
XOR and NAND are very robust, while NXOR and NOR, require greater
precision in bias current.

The gates also respond rapidly to the presentation of input. To
quantify response time, we measure how long it takes for the “0” (OFF)
response of the output neuron to switch to a “1” (ON) response. Here,
we measure the time difference from when the input is presented to the
network to the timing of the first spike in the output neuron. We
sampled multiple different bias current configurations, some are faster
than others, but all roughly respond in a few tens of milliseconds, which
matches the scale of the membrane time constant of the neurons in the
models.

Temporal logic
The CRIREL logic gates are not limited to processing the differences
between themagnitude of two inputs, but can process the differences in the

timing between two inputs [Fig. 4a]. Here we define two inputs arriving at
the same time as (1, 1). Likewise, two inputs arriving at different times are (1,
0) and (0, 1). As before, the absence of any signal is considered (0, 0). Note
that the magnitude of all inputs is the same.

To demonstrate, we show an NXOR gate (not exclusive or) [Fig.
4b]. Here, the network and, thus, output neuron fires in the absence of
input (0, 0). Whenever the signal (1, 1) is present, the firing rate
increases. However, whenever two signals arrive at different times (1, 0)
and (0, 1), the circuit turns itself off, and the output neuron is silent.We
can easily transform the network into any other of the eight logic gates.
Here, we show the NAND gate [Fig. 4c], again, the absence of signal (0,
0) is firing, but the network fires when there is a timing difference (1, 0)
and (0, 1) and is silent when the timing is the same (1, 1). We also
highlight the NIMP gate, which is the logical negation of the Imply gate
[Fig. 4d]. This gate shows no response if the timing is perfectly syn-
chronized (1, 1) or the blue signal leads (1, 0), however shows a response
if the yellow signal leads (0, 1). We refer to this also as a surprise gate, as
one can imagine if the blue signal is trying to predict the yellow signal
(with some time lag) the network remains silent. However, if the pre-
diction fails, the network turns on to alert to a failure of prediction.
Finally, we conclude with an XOR gate example [Fig. 4e]. It is worth
stressing that these examples coexist with the same synaptic weights,
only the bias currents change [Supplementary Table 9].

Again, we show that all eight unique logic gates exist for at least some
set of bias currents, and test this for both LIF neurons [Fig. 5a] and for IZH
neurons [Fig. 5b]. The bias currents used to produce these eight gates can be
found in the supplement [Supplementary Tables 9, 10]. We provide the
parameter sweep for 6 of the logic gates as a two-dimensional sweep of

Fig. 1 | The CRIREL circuit. A The circuit consists of two mutually coupled exci-
tatory neurons connected to two mutually coupled inhibitory neurons. B The 2D
reduced phase plane of the firing rate version of the network. The blue nullcline is the
average excitation, and the red nullcline is the difference between inhibitory neu-
rons. The particular setup is capable of storing 2-bit working memory. C LIF
implementation of the 2-bit memory storage. Depending on the input into the
network, the network can either store ON/ON (1, 1), ON/OFF (1, 0), OFF/ON (0, 1),
or OFF/OFF (0, 0). The network can store this information until a negative reset
signal. D Twenty-four unique functions with the same synaptic weights. Only the
input style and input strength change. All twenty-four distinct functions are

categorized based on logic tables and input types. All twenty-four functions share the
same synaptic weight; only input type and bias current change.Di The eight unique
functions processing inputs with different magnitudes. Dii The eight unique func-
tions processing inputs with different timing offsets.Diii The eight unique functions
are processing two periodic inputs with different phase offsets. E The full circuit
diagram to implement neuromorphic logic gates. Two input neurons are used to
convert square pulses into spike trains. The output neuron is used to unambiguously
map a two-dimensional input to a one-dimensional output. The input and output
neurons are not essential for the computation of the CRIREL circuit.
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Fig. 3 | All magnitude gates. AAll eight-magnitude logic gates for the LIF version of
theCRIREL. Both IMPandNIMPhave amirror image that is not shown.BAll eight-
magnitude logic gates for the IZH version of the CRIREL. Both IMP andNIMP have
a mirror image that is not shown. C A sweep through the inhibitory bias and
excitatory bias for the LIF model. Each gate is labeled based on its color.D A sweep
through the inhibitory bias and excitatory bias for the IZH model. Each gate is

labeled based on its color. E The robustness of each LIF gate in terms of bias current.
It is calculated as the square root of the area for each gate in (C). Larger values
represent more robust gates. F The average time from a silent OFF state for the
output neuron to the first spike of an ON state for the output neuron. We sampled
different biases from the sweep in (C).

Fig. 2 | Magnitude logic. A Input protocol for the magnitude logic gate. The dif-
ference between the magnitude of the square pulses determines the (1, 1), (1, 0), (0,
1), and (0, 0). The truth tables for AND and XOR are shown.BThe LIF version of an
AND gate. The activity of the excitatory neurons (E1 & E2) and the output neuron
(Out) are shown. A cartoon representation of the input protocol (Inp) is also shown.

C Same as (B) but for an XOR gate. D An example of the CRIREL being converted
back and forth betweenXOR andANDgates on thefly during the signal input.EThe
latency of switching output for the input a (0, 0) to a (1, 0) in an XOR gate is 47mS or
about five spikes. Latency of gate switching, which occurs on the scales of 20 ms or
about two spikes.
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Fig. 5 | All temporal gates. AAll eight temporal logic gates for the LIF version of the
CRIREL. Both IMP and NIMP have a mirror image that is not shown. B All eight
temporal logic gates for the IZH version of the CRIREL. Both IMP andNIMP have a
mirror image that is not shown.CAsweep through the inhibitory bias and excitatory
bias for the LIFmodel. Each gate is labeled based on its color.DA sweep through the
inhibitory bias and excitatory bias for the IZHmodel. Each gate is labeled based on its

color. E The robustness of each gate in terms of bias current. It is calculated as the
square root of the area for each LIF gate in (C). Larger values represent more robust
gates. F The average time from a silent OFF state for the output neuron to the first
spike of an ON state for the output neuron. We sampled different biases from the
sweep in (C).

Fig. 4 | Temporal logic. A Protocol for the temporal logic gate. The difference
between the timing of the square pulses determines the symbols (1, 1), (1, 0), (0, 1),
and (0, 0). The difference in timing is 10 ms. The difference between signals is
exaggerated for clarity. The Truth tables for NXOR, NIMP, NAND and XOR are
shown. B The LIF version of an NXOR gate. The activity of the excitatory neurons

(E1 & E2) and the output neuron (Out) are shown. A cartoon representation of the
input protocol is shown. C The LIF version of a NAND gate. The activity of the
excitatory neurons and the output neuron are shown. D The LIF version of the
NIMP gate. This gate is the logical negation of the Imply gate. E The LIF version of
the XOR gate.
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excitatory subsystem bias, and inhibitory subsystem bias [Fig. 5c, d]. As
before, IMP and NIMP require asymmetric bias currents, they don’t fit
neatly into a two-dimensional sweep.

We can test robustness by considering magnitude A and timing dif-
ferenceΔt as free parameters (Supplementary Fig. 3). It is important to note
that the synaptic weights are the same as the synaptic weights in the mag-
nitude example, only the input protocol was changed.

Phase logic
Given the ability to look at the relative timing of two inputs, it is natural to
ask if computation can be done on phase differences between two peri-
odically repeating inputs. The input neurons take a pure sinusoidal signal
[Fig. 6a]. Here it is important to note we do not convert the sine-wave into a
spiking signal, rather we feed the raw sine-wave into the CRIREL network
directly.

As expected, the definition of the inputs and output change. We
consider (1, 1) to be when the two input waves are synchronized. Similarly,
we consider (0, 1) to be phased delayed and (1, 0) to be phased advanced.
Interestingly, we can define (0, 0) as two anti-synchronized inputs. Here, an
output neuron is considered ON if, at any time during a full cycle of the
sinusoidal input, the outputneuron spikes.Often, theoutputneuronwillfire
during the maximum of the input wave [Fig. 6b, c], but for anti-
synchronized (0, 0), the output neuron fires during the average value
[Fig. 7a NOR].

As a concrete example, we point out three examples: AND [Fig. 7a
AND], NIMP advanced [Fig. 6b] and NIMP delayed [Fig. 6c], and NOR
[Fig. 7a NOR]. For example, AND acts as a coincidence detector and fires
only when the two signals are synchronized [Fig 7a AND]. NIMP (or Not
Imply), we call the surprise detector [Fig. 6b], as if you imagine one wave
predicting the other wave, then the output neuron will only fire when the
prediction lags behind the measurement, that is, the prediction is no longer
accurate. More concretely, that means NIMP’s output neuron fires when-
ever it is in the (1, 0) state, not the (0, 1). Notice that the distinction between
(1, 0) and (0, 1) is arbitrary, and as such, there are two symmetric versions of
NIMP that can be easily switched between by flipping the asymmetry
present in the bias currents [Fig. 6c]. TheNORgate [Fig. 7a] only fires when
the two waves are perfectly anti-synchronized. It is silent in the other
three cases.

We also show that all eight unique logic gates exist for phase-type
computations, and test this for both LIF neurons [Fig. 7a] and IZHneurons
[Fig. 7c]. The bias currents used to produce these eight gates can be found in

the supplement (Supplementary Tables 11, 12). We provide the parameter
sweep for six of the logic gates as a two-dimensional sweep of excitatory
subsystem bias, and inhibitory subsystem bias for LIF [Fig. 7b, d]. Because
IMP andNIMP require asymmetric bias currents, they don’tfit neatly into a
two-dimensional sweep.

It is also important to discuss howprecise the synapticweightsmust be.
The gates would be useless if they require a specific synaptic weight and
cannot tolerate any deviation from this value. We find that most gates are
robust up to 10% difference in the synaptic weights [Supplementary Fig. 4].

Application: adder circuit
Flexible gate switching is a unique property of CRIREL logic gates. To
demonstrate its advantages, we recreated the well-documented 4-bit ripple
carry adder circuit, which is a digital logic circuit used for performingmulti-
bit binary addition. It is composed of four 1-bit full adders [Fig. 8a]. A full
adder takes in three inputs, the two summands, and the carry from the
previous digit [Fig. 8b]. This is fed into twoCRIRELs, one for computing the
sum and the other for computing the carry. We add a buffer neuron to
regularize the output firing rate. Note that a traditional transistor-based
adder requires nine NAND logic gates [Fig. 8c]55, while only two neuro-
morphic logic gates are required.

Here, it is important to note that the two summands are the traditional
magnitude inputs from above. Here, the carry induces a change in the bias
current of the CRIRELs to switch the logic gate from AND to OR for the
carry CRIREL, and XOR to NXOR for the sum CRIREL [Fig. 8d]. The bias
currents used to switch can be found in [Supplementary Table 13] and are
graphically represented as well [Fig. 8e].

It is also worth noting that to ensure output amplitudematches output
magnitude, we added a buffer neuron to match the output firing rate (i.e.,
magnitude) to the input firing rate for AND, OR, XOR, and NXOR logic to
work. It works by having a sharp threshold such that it reaches the max-
imum firing rate with any input from the output neuron. To see the para-
meter of the buffer neuron, see the methods [Supplementary Table 2]. One
particularly interesting implication of the full-adder is that CRIREL circuits
can be combined together to create cascading logical operations. This is by
no means limited to magnitude logic (as with the full adder example), but
extends to phase and temporal computation as well [Supplementary Fig. 5].

To implement a 4-bit ripple adder, we connect four 1-bit full adders
together [Fig. 8f]. A 1-bit adder requires at least 50ms to generate a correct
response time [Fig. 8g]. Carry propagation delay necessitates a minimum
200-ms delay for a 4-bit ripple carry adder.

Fig. 6 | Phase logic. A Protocol for the phase logic
gate. The difference between the phase of the sine
waves determines the input state, i.e., (1, 1) syn-
chrony, (1, 0) phased advanced, (0, 1) phase delayed,
and (0, 0) anti-synchronized. The truth tables for
NIMP delayed, and NIMP advanced are shown.
B The IZH version of a NIMP delayed gate. The
activity of the output neuron is shown. A cartoon
representation of the input protocol is shown.CThe
IZH version of a NIMP advanced gate. The activity
of the excitatory neurons and the output neuron
are shown.
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We investigated CRIREL’s noise tolerance, which is essential to a
network’s usability.We appliedGaussian noise to the bias andmeasured the
accuracy of the logic operation (seeMaterials andMethods).We quantified
both absolute noise (measured in nA) and relative noise (percentage of bias
current). Results show CRIREL-based adders have a 0.1 nA tolerance for
absolute noise and a 10% tolerance for relative noise [Fig. 8h] (NXOR is an
exception, ranging between −10 to +5%).

Application: reconfigurable motion detection
Conventional motion detectors such as the Hassenstein-Reichardt
model only detect a fixed direction it is set to detect56. Our NIMP gates
can perform conditional motion detection by ignoring the panning
motion and detecting only the moving object in the scene. We
demonstrate how NIMP gates can be reconfigured to detect objects
moving against optical flow induced by a panning camera. This
functionality relies on two NIMP gates that are antisymmetric coun-
terparts of each other [Fig. 9a]. NIMP gates can be used to detect either
rightward or leftward optical flow. For simplicity, we can consider
optical flow on a one-dimensional pixel array [Fig. 9b]. Here, we have a
collection of white pixels moving either rightward or leftward. The
circuit compares the pixel value of two adjacent pixels. Depending on
the chosen bias currents, the circuit is either rightward-selective or
leftward-selective, firing spikes whenever bright objects pass by the two
pixels being compared. It achieves selectivity by comparing the phase
delay between the left and right pixels [Fig. 9b]. Depending on the bias
of the network, the network responds only if the right pixel lags the left
pixel, or if the left pixel lags the right pixel. We can now consider a
panning camera, again considering a 1D pixel array. The camera either
pans right or left, inducing a flow in the opposite direction. At 1000 ms,
an object appears moving against the optical flow induced by the

panning [Fig. 9c]. The NIMP gate’s directional sensitivity can be tuned
to pick up either the object moving against the flow [Fig. 9d left] or the
flow itself [Fig. 9d right]. They can be reprogrammed depending on the
direction of the panning camera. To detect an object moving with the
flow, the directional selectivity is set to be opposite the flow induced by
the panning camera. While this is just a simple setup to demonstrate a
proof-of-concept, the key observation is that the camera pan can send a
signal to the CRIREL circuits and reconfigure the network’s receptive
field to be leftward or rightward selective. There is no need to change
synaptic weights to change the network’s receptive field.

Independence of neuronal unit
Wehave stressed that the underlying neuronmodel that theCRIREL circuit
is composed of does notmatter. Any neuronwith amonotonic saturating IF
curve can form a flexible neural network. However, the implementation
need not be spiking. Components with saturating non-linearity can also
perform flexible logic. Any system of the following form can have flexible
and reconfiguable logic.

τ
de1
dt

¼ �e1 þ f ðgeee2 � giei1 þ beÞ ð1Þ

τ
de2
dt

¼ �e2 þ f ðgeee1 � giei2 þ beÞ ð2Þ

τ
di1
dt

¼ �i1 þ f ðgeie1 � giii2 þ biÞ ð3Þ

τ
di2
dt

¼ �i2 þ f ðgeie2 � giii1 þ biÞ ð4Þ

Fig. 7 | All phase gates. A All eight phase logic gates for the LIF version of the
CRIREL. Both IMP and NIMP have a mirror image that is not shown. B A sweep
through the inhibitory bias and excitatory bias for the LIFmodel. Each gate is labeled

based on its color. C All eight phase logic gates for the IZH version of the CRIREL.
D A sweep through the inhibitory bias and excitatory bias for the IZH model. Each
gate is labeled based on its color.
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G H

EC

Fig. 8 | An adder application for CRIRELs. A The schematic and the truth table of
full adder. Carry-out (Cout) toggles between AND and OR gates, while the sum-
mation (Sum) toggles between XOR and NXOR gates. B The networks of 1-bit full
adder. C A classical 9-gate 1-bit adder, note that it has seven more required logic
gates than the gate switching adder. D The output firing rates of two CRIRELs.
E Parameter space for the control neurons, when the neuron is off, the network
switches from the starting gate AND and XOR to NXOR and OR. The synaptic

weight of the control neuron is tuned such that the resulting constant current
changes the bias current to switch to the correct gate. F The schematic and network
of 4-bit ripple carry adder.GThe response time of the adder. A 1-bit adder requires a
response time of 50 ms, and a 4-bit ripple carry adder needs 200 ms. H The adder
composed of CRIRELs can tolerate an absolute noise of 0.1 nA and relative noise of
10% in its bias.
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τ
do1
dt

¼ �o1 þ f ðgoðe1 þ e2ÞÞ þ bo
� ð5Þ

Here we show two implementations of f given by a clipped ReLU
[Fig. 10a] and a sigmoid function [Fig. 10b].

f ðxÞ ¼ cReLUðxÞ ¼ f ðxÞ ¼
0 if x<0

x if 0≥ x ≥ c

c if x ≥ c

8><
>:

ð6Þ

f ðxÞ ¼ sigðxÞ ¼ 1

1þ e�
x
a

ð7Þ

As before, we can test the three different input types: magnitude
[Fig. 10ci], temporal [Fig. 10cii], and phase [Fig. 10ciii] for both the sig-
moidal function and the clipped ReLU. Again, all six symmetric logic gates
canbe foundby sweeping through be and bi. It is important tonote that there
can be oscillatory solutions present. While outside the scope of the paper
here, these are useful for pace-making and central pattern generation
standpoint (see ref. 9) for a thorough investigation of oscillatory behavior.

Discussion
In this study, we conclusively show that small spiking recurrent neural
microcircuits are incredibly flexible. Here, by picking a set of synaptic
weights such that the bias currents can uncontrollably unfold the
double-cusp bifurcation, we are able to switch between an incredibly
diverse range of different operations. To concretely define unique
functions, we used logical truth tables to associate each function with a
logic gate. Moreover, we showed that these logic gates can process three
different types of inputs, namely, magnitude, temporal, and phase.
Furthermore, we found that the gates are robust against membrane
noise, and operated over a range of synaptic weights. Strikingly, we
showed that these results were independent of the neuron imple-
mentation, as we found working versions in LIF, IZH neurons (in the
integrator regime), and firing rate models. While we tested the network
with all integrator neurons49, it would indeed be interesting to test the
network with the IZH neurons set as resonators42.

We also investigated two new types of information processing: dif-
ferences in the arrival of signals, temporal, and differences in the phase of
periodic signals. We showed that the flexible gate switching can be used to
create a 4-bit ripple carry adder.Additionally,we showedhow todefine logic
with thedifferences between the signals.Moreover,we showed that this logic
can be used to detect events. Specifically, these networks can rapidly and
flexibly reconfigure to detect either a rightward traveling white pixels, or a

A B

DC

Ti
m

e 
(m

se
c)

Fig. 9 | Detectingmotion against amoving background. A The not imply (NIMP)
gate has two antisymmetric versions that can be easily switched between by flipping
the bias current asymmetries. B Two circuits with different antisymmetric bias
currents are sensitive to either rightward-moving white pixels or leftward-moving
white pixels. C Two examples of a leftward/rightward moving flow with an object

moving rightward/leftward at 1000 ms.DCircuits withNIMP biases comparing two
adjacent pixels (indicated by the blue and yellow arrows). The blue circuit detects
rightward motion, the yellow circuit detects leftward motion. The network can
distinguish between flow and the object moving against the flow.
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leftward traveling white pixels. Finally, we show that the reconfigurability is
a property of the network, not the underlying neuronal model.

This is in line with previous research showing that recurrent neural
networks are more flexible than their feedforward counterparts9. Specifi-
cally, this study takes advantage of a nearby cusp bifurcation53. This tracks
with the plethora of studies that show networks near bifurcations are
inherently more flexible33,49–53. Studies have been able to embed complex
functions into networks that are near multiple bifurcations33,38,48, and other
studies have shown, that networks far away from bifurcations means that
the network has redundant neurons53. Here, we push this idea to its limit by
fitting 24 unique functions into a 4-neuron microcircuit. Additionally, we
show that one can rapidly switch between these functions without changing
the synaptic weights, making use only of the bias currents.

This provides a particularly powerful technique, as often switching
functions is seen as a neuromodulatory process10,19–21, or a synaptic weight
process36–40. While clearly, these process can and do change a network’s
function, they are not the only means. Contextual information and top-

down control have been shown to optimize23,25,27,30,50,51,57, or even switch, the
function of decision networks in the prefrontal cortex13,58,59. Here, we show
that bias current (which can be thought of as weak constant input) can
rapidly switch the function of a microcircuit, allowing a potential
mechanism for integrating contextual information or top-down control.
This is a tantalizing direction for future investigation, especially if a learning
algorithm can be used to embed multiple tasks into recurrent networks.

Currently, feedforward spiking neural networks (SNNs) are also cap-
able of computing logic operations34,35, with modern implementations
operating on single spikes. While these models excel in quick computation
due to their single-spike operation, they aremore susceptible to noise, as any
variation in spike timing can disrupt the logic computation [Supplementary
Table 14].

In these models, synaptic weights are precisely tuned for each logic
gate, which helps minimize the neuron count and synapse number [Sup-
plementary Table 14]34. Despite this, no feedforward network currently can
robustly and flexibly adjust to all possible gates by merely changing the bias

Input strength (unitless) Input strength (unitless)
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t s

tre
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Capped ReLU SigmoidalA B

Ci Cii Ciii

Fig. 10 | Examples of saturating rate fire neurons in CRIREL circuit. A Capped
ReLU function activation curve. B Sigmoidal function activation curve. Ci A sweep
through the inhibitory bias and excitatory bias for magnitude computation. Each

gate is labeled based on its color. Cii A sweep through the inhibitory bias and
excitatory bias for temporal computation. Ciii A sweep through the inhibitory bias
and excitatory bias for phase computation.
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current. More critically, no feedforward network can compute
temporal logic.

This limitation arises because a feedforward network possesses one
fixed point and lacks both working memory and temporal dynamics. After
the input delay has passed, an input of (1,0) or (0,1) becomes indis-
tinguishable froman input of (1,1).Consequently, distinguishinggatesXOR
and NXOR from always-off (OFF) and always-on (ON) gates becomes
impossible.

While our network here has a particular neuromorphic implementa-
tion,we are not limited by these implementations.Our results show that any
sigmoidal saturation is capable of generating a flexible and reconfigurable
circuit. This leaves the door open to many potential applications. The sig-
moidal saturation means reconfigurable electronic circuits could be made
with memristors4,5,46 or homojunctions45. Moreover, our circuit’s compat-
ibility with neuromorphic architectures could find use in neuromorphic
chips60–62, especially with liquid state machines33,62. Finally, given that the
networkwas reconstructable with Izhikevich neurons49 it is conceivable that
our neural circuit can be grown in a real brain organoid7,8.

Another potential avenue for future work involves the robustness of
some of the gates. Gates like AND were the least robust of the operations,
being the least tolerable to noise.However, it is known that gap junctions are
capable of averaging out the activity levels of two neurons. If a gap junction
(which is commonly observed in parvalbumin-containing neurons63,64) is
added between the inhibitory neurons, this should expand the basin
attraction associatedwith the (1, 1) state.A larger (1, 1) state should translate
intomore robustness to noise for the AND state, at the cost of robustness of
the XOR state. This remains to be thoroughly tested.

While we tried to be as comprehensive with input processing types, we
cannot be exhaustive. Several interesting directions remain for future work.
Is there computation based on differences in frequency? Would a network
composed of resonators be ideal for detecting differences in frequency? On
the other hand, could the order in which symbols are presented (1, 1) then
(0, 1) be different than (0, 1) then (1, 1)?Could one leverage this to construct
finite-state machines? These are tantalizing open questions.

Finally, while we give a useful account of small microcircuits, the
approach needs to be expanded to larger networks. Some studies have
successfully embedded arbitrary motor commands into E/I balanced
networks near multiple bifurcations33. It remains to be seen how many
unique functions can be embedded in a larger network, and if this
technique of unfolding the bifurcation in predictable ways can be of use.
Using our full adder example, we demonstrated how CRIRELs can be
interconnected to form cascading logic circuits, where the output of one
circuit serves as the input for the next.We showed logic can be cascaded
for magnitude (Fig. 8), phase, and temporal computation [Supple-
mentary Fig. 5]. However, this is far from a comprehensive list of
possible logic circuits. Future work is needed to explore other higher-
order circuits composed of flexible CRIRELs. Applications can include
motion control1, motor planning33, and event-based image
processing65,66. Specifically, can learning be used to configure a group of
4-neuronCRIREL circuits, or even a larger,more general network? If so,
that could open up new opportunities to minimize neuron count but
maximize task number. This could have major consequences for edge-
deployed neuromorphic computing.

To conclude, we made use of CRIREL networks near a double-cusp
bifurcation, and were able to control the unfolding of the bifurcation with
the bias currents. We demonstrated that these microcircuits have a rich
repertoire of 24 unique functions. Ultimately, this provides a computational
foundation for how neural adaptability can occur on timescales much
shorter than plasticity. This is a novel way to control a neural circuit, and
could lead to new types of computing, especially in the growing field of
neuromorphic computing.

Methods
We make use of two neuron models, the Leaky Integrate-and-Fire model,
and the Izhikevichmodel. This is to show that flexibility is a property of the

network, not the underlying neurons. Moreover, it shows the flexibility is
robust to model choice.

Leaky integrate-and-fire model and synaptic model
We implement our leaky integrate-and-fire (LIF) model using our in-
house simulator Flysim67. Recall LIF neuron dynamics are given by the
equation

Cm
dVi

dt
¼ �gL Vi � EL

� �þ Ibias þ
X
j

Ii;j ð8Þ

Iij ¼
X
j

gijsij Vi � Eij

� �
: ð9Þ

Vi is the membrane potential of the ith neuron, Cm is the mem-
brane capacitance, gL denotes the leak conductance, and EL represents
the leak potential. Here, gij corresponds to the synaptic conductance
between neurons. We use sij to denote the synaptic variable, and Eij
denotes the synaptic reversal potential. Most importantly, Ibias is the
constant bias current we manipulate to generate the diverse set of
logical operations.

We utilize an excitatory synapse (AMPA-like), referred to here as Exc,
and an inhibitory synapse (GABA-like), referred to here as Inh, as the
neurotransmitters for excitatory and inhibitoryneurons.We refer to the two
excitatory neurons as E1andE2, and the two inhibitory neurons as I1 and I2
(see Fig. 1A). They are almost always considered symmetric, except when
different inputs or bias currents areprovided.The equations for the synapses
are shown below, and parameters for various neurons are given in Sup-
plementary Table 2.

ds
dt

¼ � s
τ
þ

X
k

δ t � tk
� �

ð10Þ

When the membrane potential exceeds the threshold voltage
(Vthreshold), a neuron generates a spike and then is reset to (Vreset). There is
no change in voltage until after the refractory period lapses.

when; Vi>V threshold then Vi !
spike

V reset
ð11Þ

The parameters for the LIF neuron are shown in Supplementary Table
3.Wemust stress that the synaptic weights for every function are the same.
The synaptic weights used for the LIF model are listed in Supplementary
Table 4.

Izhikevich model
The Izhikevich neuron is a nonlinear generalized quadratic integrate-and-
fire neuron42,49. We implement the Izhikevich neuron (IZH) in Mathema-
tica. We use the following version of the IZH neuron

dV
dt

¼ 1
k
V2 � 3V þ 40þ 100b�W þ Ibias þ

X
giSi ð12Þ

dW
dt

¼ aðbV �WÞ ð13Þ

WhenV>130; V ! c; W ! W þ d ð14Þ

Voltage was set to be akin to millivolts with an always positive voltage,
as to aid eventual implementation on a neuromorphic chip. When the
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voltage hits 130, the system resets to voltage c, and the gating variableW is
reset to W+ d. Again, we use Ibias to denote the constant bias current we
manipulate to generate the diverse set of logical operations. The synapse
gating variables S were governed by the following equation

τ
dS
dt

¼ Sþ δðt � tspikeÞ ð15Þ

where τ is a time constant, and δ is theDirac delta function, raising the value
of the synaptic gating variable S by one unit every spike. The parameters
(which should be considered unitless) are given in Supplementary Table 5.
We choose the parameters such that the neuron is an integrator.

Synaptic Weights between each neuron are given in Supplementary
Table 6.

Protocol for binary inputs
To properly define a unique function, we use logic gates as a useful classi-
fication of different functions. Classically, the input of a logic gate operates
on a binary input of two digits, either 0 or 1. There are four possible
combinations of input (1, 1), (0, 1), (1, 0), and (0, 0) and two possible
outputs, 1 or 0. There are 16 possible combinations of inputs and outputs
[Supplementary Table 1].

However, a neural circuit is not constrained to be binary. Neurons can
respond to many different properties of an input. Here, we define an (1, 1)
input as two inputs that are approximately the same (see supplemental
material for the precise range of sameness). If one input is larger in mag-
nitude, it is (1, 0) or (0, 1). If one input arrives before the other (so-called
temporal logic), we can also define it as (1, 0) or (0, 1). Finally, if one input is
phase delayed to the other input,we can classify it as (1, 0) or (0, 1). For both
magnitude and temporal logic, (0, 0) is defined as an absence of input.
However, for phase logic, (0, 0) is defined as perfect asynchrony. The truth
tables can be found in Supplementary Table 1.

In the LIF implementation, for both magnitude logic and temporal
logic, we present the input neurons of the network with two square inputs.
For the 1 symbol, the square wave has an amplitude of 5 nA. The 0 symbol
has an amplitude of 3.5 nA (except during robustness testing).

In the IZH implementation, for both magnitude logic and temporal
logic, we directly present the CRIREL circuit with the square pulse. For the
1 symbol, the square wave has an amplitude of 2.5. The 0 symbol has an
amplitude of 2.5 (except during robustness testing). Recall that the Izhike-
vich neuron is unitless.

For phase logic, in both versions, we present a sinusoidal input directly
to theCRIREL circuit. In the LIFmodel, thewave has a period of 40ms, and
an amplitude of 2 nA. Phase delay was defined as π

10 radians. For the IZH
model, the wave has a period of 400ms, and an amplitude of 1. Phase delay
was defined as π

8 radians.

Categorizing logic gates
Tocategorize the logic gates for the twoneuromorphic implementations,we
used a protocol in which the input given to the circuit follows the following
order: (0, 1), (1, 1), (1, 0), (0, 1),with adurationof 1 timeunits for each input,
and awindow of 0.5-time units between each input.We then checkwhether
the output neuronhas any spikes. If so,we label that output as 1. If not, it is 0.
We thenconstruct a logic gate truth table and assign a logic gate accordingly.

To categorize the non-neuromorphic implementations, each pulsewas
five time units long, with a five time unit pause between the inputs.We took
the value of the output neuron in themiddle of the pulse (2.5 time units after
input onset). If it was above the threshold of 1.5 units, we considered it 1 else
0. For phase, we considered the circuit on if the maximum value ever
exceeded a threshold of 1.5 units for the 40 time unit simulation.

Accuracy testing for ripple carry adder
To test the accuracy and robustness against noise,we inject all neurons in the
4-neuron circuit (E1, E2, I1, I2) with a Gaussian white noise. The mean of
the white noise is always zero. We sweep exponentially through increasing

standard deviation strength. For the absolute noise, we sweep from a
standard deviation of 0.01 nA to a standard deviation of 1.0 nA. For the
relative noise condition, we sweep from a standard deviation of 0.1% of the
maximal bias of each neuron to 100% of the maximal bias of each neuron.
We present 1000 randomly chosen pairs of 4-bit numbers, and run ten trials
(each adifferentGaussiannoise). If the adder returns the correct result for all
pairs of numbers and trials—that is 100% accuracy, we consider it robust.

Directional selectivity
To test the phase NIMP logic gate’s ability to flexibly respond to directional
stimuli, we build a 1D array 20 pixels long. We generate a sinusoidal tra-
veling wave within this 1D pixel array. The luminosity p of each pixel is a
sinusoidal function of pixel location x and t inmilliseconds. The equation is
given by

pðx; tÞ ¼ A sinðπkx � πwtÞ ð16Þ

with k ¼ 1
10, w ¼ 1

400, and A = 1.0. Each CRIREL circuit is connected to
adjacent pixels x and x+ 1, such that input currents in1(t) = p(x, t) (red) and
in2(t) = p(x+ 1, t) (green).As this is just aproof-of-concept,weonlyplot the
CRIREL circuit at pixel x = 10 and 11 (blue) as well as x = 15 and x = 16
(yellow).

In order to generate NIMP Logic in the phase mode, we used the
Izhikevich version of the phase logic. We used the bias currents in Sup-
plementary Table 12 for both leftward and rightward detection. Note that
the different direction selectivities are antisymmetric. This allows a CRIREL
sensitive to leftward motion to be reconfigured to rightward detection
simply by changing the bias currents.

To challenge the network more, we generate an “object” moving
against the sinusoidal traveling wave. To implement this, we use the fol-
lowing equation for pixel luminosity

pðx; tÞ ¼ A sinðkx � wtÞ þ BUðk2x � w2t þ 5Þ sinð�πk2x þ πw2tÞ
ð17Þ

Here,U is theUnit Box functionwithU(y) = 1 if jyj< 1
2 else 0.We leftA,

k, and w the same as above. We set B =−4, k2 ¼ 1
5 and w2 ¼ 1

200. This
generates a five-pixel wide object moving at the opposite speed to the
traveling wave.

In order to detect an object moving against the flow, we use a single
CRIREL circuit in our array. For demonstration purposes, we put the
CRIREL circuit at pixels 5 and 6. Depending on the bias current chosen, the
CRIREL circuit is sensitive to leftward or rightward motion. If the panning
camera is moving leftward (inducing a rightward flow), the CRIREL circuit
canbe set leftward todetect anobjectmoving against theflow, or it canbe set
to rightward detection to detect the flow. The CRIREL can be reconfigured
to do whichever computation the user desires.

Firing rate models
The network structure is given as

τ
de1
dt

¼ �e1 þ f ðgeee2 � giei1 þ beÞ ð18Þ

τ
de2
dt

¼ �e2 þ f ðgeee1 � giei2 þ beÞ ð19Þ

τ
di1
dt

¼ �i1 þ f ðgeie1 � giii2 þ biÞ ð20Þ

τ
di2
dt

¼ �i2 þ f ðgeie2 � giii1 þ biÞ ð21Þ

τ
do1
dt

¼ �o1 þ f ðgoðe1 þ e2ÞÞ þ bo
� ð22Þ
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Where e1 and e2 are state variables akin to the excitatory neurons. Likewise,
i1 and i2 are state variables akin to the inhibitoryneurons.Here,we set bo = 0.
Here be and bi are the bias currents we manipulate to change gates. We set
τ = 0.25 We offset the initial conditions from zero. We set e1(0) = 0.1,
e2(0) = 0. 1, i1(0) = 0.02, i2(0) = 0.02

The activation function for the sigmoidal version was

f ðxÞ ¼ sigðxÞ ¼ 2
1þ e�2x

ð23Þ

We set the “synaptic” weights as gee = 1.5, gii = gei = gie = 2, and go = 1.
The activation for the capped ReLU function was

f ðxÞ ¼ cReLUðxÞ ¼ f ðxÞ ¼
0 if x<0

x if 0≥ x ≥ 2

c if x ≥ 2

8><
>:

ð24Þ

We set the “synaptic” weights as gee = gii = 2, gei = gie = 1.75, and go = 1.

Data availability
We have deposited working code into a repository required to recreate the
results within this paper at the GitHub link: https://github.com/ajw131/
CRIREL_Logic_gates68. The code will be made public upon acceptance.

Code availability
The full source code and parameter files are available at https://github.com/
ajw131/CRIREL_Logic_gates68.
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